Name :Mona Abdelmonem Email: monasallam400@gmail.com

Name: Mona Abdelmonem

Email: monasallam400@gmail.com

LinkedIn: Mona Abdelmonem | LinkedIn

Name :Mona Abdelmonem Email: monasallam400@gmail.com

LINQ:

Language Integrated Query is the name for a set of technologies based on the
integration of query capabilities directly into the C# language.

Materialization Aggregatio Merging Filtring Grouping Element Quantification
Conversion

Aggregate : , Taele Lastor Defaul

ToDictionary GroupBy

First or Dafault
ToLookUP

ElerentAt

Skipe(While|
ToList Sequecnce Equals

Single or Default
Tohrmay Distinct Ey) Containg

Min(

Name :Mona Abdelmonem Email: monasallam400@gmail.com

The target is to have a uniform and structured way to operate on enumerations.

LINQ queries return always the result as new objects. That ensures that the
original enumeration will not be mutated.

LINQ queries return results as objects. It enables you to uses object-oriented
approach on the result set and not to worry about transforming different
formats of results into objects.

Execute Query

Object { Ling Query}

Remember:
All LINQ queries return a new enumeration instead of deleting, updating or
adding new items to the given one

Retrieve Result

A particular gateway for a particular data store (e.g. xml files, sql MySq|,
rdmbs) is called a LINQ Provider. It is realised by implementing the IQueryable
Interface

For a developer who writes queries

Object : ADO.NET XML Enitity saL
Collection Data Set Document FrameWork patabase

Name :Mona Abdelmonem Email: monasallam400@gmail.com

The basic type all LINQ queries operate on is IEnumerable.

Why do we need IEnumerable and IQueryable?

Both IEnumerable and IQueryable are used for to hold the collection of a
data and performing data manipulation operation for example filtering on
the collection of data.

The first important point to remember is IQueryable interface inherits
from |[Enumerable, so whatever IEnumerable can do, IQueryable can also
do

IENUMERABLE

IEnumerable ?

IQUERYABLE

EmpEntities ent = new EmpEntities();
IEnumerable<Employee> emp = ent.Employees;
IEnumerable<Employee> temp = emp.Where(x => x.Empid == 2).ToList<Employee>();

*This where filter is executed on the client side where the IEnumerable code is.

*In other words all the data is fetched from the database and then at the client its
scans and gets the record with Empld is 2.

*Filter at Client Side

DATABASE
CLIENT

FILTER

IENUMERAELE

ALL
RECORDS

Name :Mona Abdelmonem Email: monasallam400@gmail.com

IQueryable

EmpEntities ent = new EmpEntities();
IQueryable<Employee> emp = ent.Employees;
IQueryable<Employee> temp = emp.Where(x => x.Empid == 2).ToList<Employee>();

«|t creates a SQL Query at the server side

*In other words only necessary data is sent to the client side.

«Filter at Server Side

IGUERYABLE -

OMNLY REQUIRED -

RECORDS SENT

why IQueryable is better choice for "out-of-memory"data?

why I[Enumerable is better for "in-memory" data?

when it's "in-memory" it doesn't really matter. the data is already on the
memory,

LINQ (Language Integrated Query) works as a middle tier between data
store and the language environment.

Name :Mona Abdelmonem

Email: monasallam400@gmail.com

Comparison between |[Enumerable And IQueryable

Namespace
Derives form

Deferred Execution

Lazy Loading

How does it work

Suitable For

Custom Query

Extension method
parameter

When to use

Best Use

IEnumerable
System.Collection Namespace

No base interfaces

Supported

Not Supported

While query date from database
IEnumerable executes select
guery on server side load date in-
memory

On Client side and then filter date

.hence does more work and
become slow

Ling to Object

Ling to XML
Doesn’t Support

Extention method supported in
[Enumerable takes functional
object

When querying date from in-
memory collection like List ,Array

in-memory

IQuerable

System.Ling Namespace
Derives from IEnumerable

Supported

Supported

While query date from
database
IQueryable exectes select query

On Server side with all filters
.hence does less work and
become fast

Ling to SQL

Supported using createQuery
and Execute method

Extention method supported in
IQuerable takes expression
object

i.e expression tree

When querying data from out-
memory

(like remote database ,server)
collection

out-of-memory /paging

Name :Mona Abdelmonem Email: monasallam400@gmail.com

//Data Source
string[] data = { "Mona", "Abdelmonen","Soliman",b "Sare"}

//Linq Query

var names=from d in data
where d.Contains("M") || d.Contains("d")
select d;

//Query execution
foreach (var item in names)

{

le.Write(item+" "); //Output:Mona Abdelmonen

3

LINQ Method Syntax:

Method syntax (also known as fluent syntax)

Uses Extension method Included OR

*The compiler converts query syntax into method syntax at compile time

The following is a sample LINQ method syntax query that returns a collection of strings
which contains a Char "A".

ist<string> list = new List<string>

“"Mona Abdelmonem",
"Alya Awny",
"Habiba magdy",
"Alaa Elomda",
"Heba Mohamed",
"Abdula Nagy"

var result = list.Where(x => x.Contains("A"));
foreach (var item in result)

{

Console.WriteLine(item);

/t

Output:

Mona Abdelmonem
Alya Awny

Alaa Elomda
kbdula Nagy

Name :Mona Abdelmonem Email: monasallam400@gmail.com

var result = list.Where(x => x.Contains("A"));

J
{

ExtentionMethod | ambda Expression

*The real power of LINQ comes when you combine
multiple operations are used in one statement .

IEnumerable<BlogPost> allBlogPosts = await GetAllBlogPosts();
var publishedBlogPosts = allBlogPosts

.Where(bp => bp.IsPublished)

.OrderByDescending(bp => bp.PublishDate)

.Skip(pageSize * (page - 1))

.Take(pageSize)

.ToList(Q);

Filtering

-use LINQ to filter the enumeration based on the given operation.

» The Where clause is a query operator that filters a sequence
based on a specified condition.

« It returns a new sequence that contains only the elements
that satisfy the condition

Name :Mona Abdelmonem Email: monasallam400@gmail.com

P‘n!; m @ 'ﬂ!'; var res = 1‘&5111t.'L-.'I1s.-rv[:x==rx.Shape=='";1;]; f‘ﬂ;g 'ﬂ!';

-The method accepts a Predicate.
-That means we define a filter function which then gets applied object by object.
-If the filter evaluates to true, the element will be returned in the new enumeration.

Query Syntax:

new List<int>();
list.Add(1);
list.Add(2);
list.Add(3);
list.Add(d);
var res=from li in
where (1i
select 1i;
//Result: [2,4]

Lambda Syntax:

var list = new List<int>();
list.Add(1);
list.Add(2);
list.Add(3);
list.Add(W);
var res=list.Where(x=>x%2==0);
//Result: [2,4]

-Take allows us to "take" the given amount of elements.
If we have less elements in the array

-Take() will only return the remaining objects.
P @ g £ var res = list.Take(2); ro!a‘ E
Lambda Syntax: Query Syntax:

List<int>();

var res = (from 1i in list
var res = list.Take(2); select 1i).Take(2)
//Result: [1,5] ////Result: [1,5]

Name :Mona Abdelmonem Email: monasallam400@gmail.com

-With Skip we "skip" the given amount of elements
- If we skip more elements than our list holds, we get an empty enumeration back.

'ﬂ‘; A M var res = list.Skip(2); 7% B
L4

Note:
Take and Skip together can be very powerful for stuff like pagination.

-returns a new enumerable where all duplicates are removed .

-Distinct the level of the object

list.Distinct()

var list = new List<int>();
list.Add(1);
list.Add(1);
list.Add(2);
var uniqueElements = list.Distinct();
foreach (var item in uniqueElements)

{

}
//0utput
// 11,21

Console.Write(item+" ");

Name :Mona Abdelmonem Email: monasallam400@gmail.com

works similar to Distinct but instead of the level of the object itself we can

define a projection to a property where we want to have a distinct result set.

--DistinctBy the level of the property

U g 6 .DestincatBy(X=>X. W) ! ! Iil

var people = new List<Person>

new Person("Mona", 22),
new Person("Ali", 29),
new Person("Mona", 22),
new Person("Abdula", 29),
new Person("Mona", 22)
b
var uniqueAgedPeople = people.DistinctBy(p => p.Age);//Distinict By Age
foreach (var item in uniqueAgedPeople)

{

}

/*
Output:
Mona 22
Ali 29
*

Console.WriteLine(item.Name + " " + item.Age);

OfType checks every element in the enumeration if it is of a given type
-That helps especially if we have untyped arrays (object)

-we want a special subclass of the given enumeration.

o B 2 ometB> g

Name :Mona Abdelmonem Email: monasallam400@gmail.com

var fruits = new List<Fruit>
{
new Banana(),
new Apple()
3

var apples = fruits.O0fType<Apple>();

Projection

*Projection describes the_transformation of an object into a new form.

*By using projections, you can create a new type which is

built from your original type.

-we map from our a given type to a desired type.

-The result set has the same amount of items as the source set.

=1 1| Select((]— /\) 4h A A A

-is used to flatten lists.
-If you have a list inside a list we can use it to flatten this into a

one dimensional representation.

@@@&) SelectMany(O—) il b W Wi 1

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Aggregation

Aggregation describes the process of reducing the whole enumeration

to a single value.

we count elements by a given function. If the function evaluates to true,

we increase the counter by one.

Aggregate, also known as reduce, aggregates/reduces all elements into

a scalar value.

var numbers = new[] { 1, 2, 3 };

var sum = numbers.Aggregate(0®, (curr, next) => curr + next);
//Output:6

var sumLing = numbers.Sum();
// Output:6

-Max(By) retrieves the biggest element.

-If Max or MaxBy is presented an empty enumeration it will also return an empty
enumeration.

var max = new[] { 1, 2, 3 }.Max();
var people = new[]

new Person(15,"Mona"),
new Person(7,"Abdelmonem")

b

var oldest = people.MaxBy(p => p.id);
Console.WriteLine(oldest.name);
//0utput: Mona

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Quantification

Those operations want to measure the quantity of something.

-Any checks if at least one element satisfies your condition. If so, it returns true.
-If there is no element that meets the condition, then it returns false.

-It returns false if the given enumeration is empty

Il True

new[] { 1, 2, 3 }.Max();
var people = new[]

new Person(15,"Mona"),

new Person(7,"Abdelmonem")
}
var oldest = people.Any(x => x.id > 9);
Console.WriteLine(oldest);
//Output: True
var oldest2 = people.Any(x => x.id <5);
Console.WriteLine(oldest2);
//Output: False

-checks if All of your elements in the list satisfy a certain condition. If so returns true,
otherwise false.

5 6 —-All (8) /False

Name :Mona Abdelmonem Email: monasallam400@gmail.com

var max = new[] { 1, 2, 3 }.Max();
var people = new[]

new Person(15,"Mona"),
new Person(7,"Abdelmonem")
b
var oldest = people.All(x => x.id > 9);
Console.WriteLine(oldest);
//Output: False
var oldest2 = people.All(x => x.id ==7);
Console.WriteLine(oldest2);
//Output: False

-SequenceEquals checks if two sequences are equal.
-It uses the default equality comparer
-Two empty lists are also equal

-There is an optional second parameter which allows to pass in an
IEqualityComparer

-That is useful if you don’t have control over the type

l:¥, SequenceEquals(@ o)8) /I True

| y

new[] {1, 2, 3, 4 };
var numbers2 = new[] { 1, 2, 4, 3 };

var equal = numbers.SequenceEqual(numbers2);
// Output: false

Name :Mona Abdelmonem Email: monasallam400@gmail.com

responsible of merging two or more enumerations into one object.

Join works similar to a SQL Left-Join

var res = from el in empl
join e2 in emp2
on el.emp_id equals e2.emp_id
select new

{
Emp_Name = el.emp_name,
Emp_Salary = e2.emp_salary

}

With Zip we "merge” two lists by a given merge function.
-We merge objects together until we run out of objects on either of the lanes.
-The first list contains 9 element and the second list contain 3 element

So the result will contain the 3 element

var letters = new[] { 1,2,4,5,6,7,8,12,20 };
var numberss = new[] { 1, 2, 3 };

var merged = letters.Zip(numbers, (x,y) => x*y);
foreach (var item in merged)

{

Console.Write(item+" ");

}
//Output: 1 4 12

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Element

how to retrieve a specific item from the enumeration

- returns the first occurrence of an enumeration

-If no element is found, it throws an exception.

var people = new[]
new Person(30,"Mona"),
new Person (15,"Abdelmone"),
new Person(30,"Noor")

b

var res =people.First(x=>x.Age==30);

Console.WriteLine(res.Age+" "+res.Name);
//Output: 30 Mona

Single does not return immediately after the first occurrence

-The difference to First is that Single ensures there is not a second item of the given
type

-Single has to go through the whole enumeration (worst case)

if it can find another item it throws an exception.

If no element is found, it throws an exception.

Name :Mona Abdelmonem Email: monasallam400@gmail.com

var people = new[]

new Person(30,"Mona"),
new Person (15, "Abdelmone"),
new Person(30,"Noor")

}

var res =people.Single(x=>x.Name=="Mona");

Console.WriteLine(res.Age+" "+res.Name);
//Output: 30 Mona

var res2 = people.Single(x => x.Age == 30);
Console.WriteLine(res2.Age + " " + res2.Name);
//Output:

//This throws an exception as there are

// Sequence contains more than one matching element

If no element is found in the given enumeration it returns it the default

- for reference types null
-for value types the given default like O for an integer

. Since .NET6 we can pass in what "default” means to us.

var people = new[]

new Person(30,"Mona"),
new Person (15,"Abdelmone"),
new Person(30, "Noor")

b

var res =people.FirstOrDefault(x=>x.Name=="Ali");

Console.WritelLine(res);
//0utput :Null

var res2 = people.SingleOrDefault(x => x.Age == 50, new Person(@, "Not Found"));
Console.WriteLine(res2.Age + " " + res2.Name);

//Pass Default Parameter

//Output:0 Not Found

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Materialisation / Conversion

A lookup is defined that we have a key which can point to list of objects
(1 to n relation).

The first argument takes the "key"-selector.

The second selector is the "value".

A LookUp-object is immutable. You can't add elements afterwards.

var products = new[]
new Product("Smartphone", "Electronic"),
new Product("PC", "Electronic"),

new Product("Apple", "Fruit")

b

var lookup = products.ToLookup(k => k.Category, elem => elem);

-ToDictionary works similar to ToLookup with a key difference.
-The ToDictionary method only allows 1 to 1 relations

-If two items share the same key, it will result in an exception that the key is already
present.

-Also the dictionary can be mutated afterwards

Name :Mona Abdelmonem Email: monasallam400@gmail.com

var products = new[]
{
new Product(l, "Smartphone"),
new Product(2, "PC"),

new Product(3, "Apple")

}

var idToProductMapping = products.ToDictionary(k => k.Id, elem =>elem);
// Product { Id: 1, Name: "Smartphone" }
var itemWithIdl = idToProductMapping[1];

- objects of the type Enumerable are not evaluated directly but only when they are
materialised.

new List<int>(Q);

list.Add(1);

list.Add(2);

var evenNumbers = list.Where(n => n % 2 == 0).ToList();
list.Add(d);

list.Add(8);

list.Add(10);

// Even numbers in list: 1

// as we materialised the list

Console.WriteLine($"Even numbers in list: {evenNumbers.Count()}");

If we don’t write the .ToList() //Output!!!!

var list = new List<int>();
list.Add(1);
list.Add(2);
var evenNumbers = list.Where(n => n % 2 == 0);
list.Add(d);
list.Add(8);
list.Add(10);
// Even numbers in list: 4
Console.WriteLine($"Even numbers in list: {evenNumbers.Count()}");

Grouping

Name :Mona Abdelmonem Email: monasallam400@gmail.com

-GroupBYy groups the enumeration by a given projection / key
-All elements which share this exact key get grouped together
-It is almost identical to ToLookup with a very big difference

-Calling ToLookup means "I want a cache of the entire thing right now organised by
group.”

var products = new[]

{

new Product("Smartphone", "Electronic"),
new Product("PC", "Electronic"),

new Product("Apple", "Fruit")

i

var lookup = products.GroupBy(k => k.Category, elem => elem);

which behave like sets. Sets are specially in the sense that they only hold distinct
(disjoint) objects in them

The union of two lists will result in every distinct element which is in both of your lists

It behaves like a set, so duplicated items are removed.

OO ' "o '@

var numbersl = new[] { 1, 1, 2 };
var numbers2 = new[] { 2, 3, 4 };

var result = numbersl.Union(numbers2);

// Output: [1, 2, 3, 4]

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Intersect works similiar to Union but now we check which elements
are present in list A AND list B

-Only unique items are in the new list. Duplicates are automatically removed.

var numbersl = new[] { 1, 1, 2 };
var numbers2 = new[] { 2, 3, 4 };

var result = numbersl.Intersect(numbers2);

// Output: [2 1]

The different between Deferred Execution & Immediate Execution

1. Deferred or Lazy Operators:
These query operators are used for deferred execution. For example — select,
SelectMany, where, Take, Skip, etc. are belongs to Deferred or Lazy
Operators category.

. Immediate or Greedy Operators:
These query operators are used for immediate execution. For Example —
count, average, min, max, First, Last, ToArray, ToList, etc. are belongs to the
Immediate or Greedy Operators category.

Deferred Execution:

it doesn’t execute by itself. It executes only when we access the query results.
So, here the execution of

the query is deferred until the query variable is iterated over using for each loop.

List<Employee> listEmployees = new List<Employee>
{

new Employee { ID= 1001, Name = "Priyanka", Salary = 80000 },
new Employee { ID= 1002, Name "Anurag", Salary = 90000 },
new Employee { ID= 1003, Name = "Preety", Salary = 80000 }
3
IEnumerable<Employee> result = from emp in listEmployees
where emp.Salary == 80000
select emp; //Deferred Execution

listEmployees.Add(new Employee { ID = 1004, Name = "Santosh", Salary = 80000 });
foreach (Employee emp in result)

{

Console.WriteLine($" {emp.ID} {emp.Name} {emp.Salary}");
}

Name :Mona Abdelmonem Email: monasallam400@gmail.com

1004 Santosh 8¢

Immediate Execution:

it forces the query to execute and gets the result immediately.
Let us see an example for a better understanding.

List<Employee> listEmployees = new List<Employee>

new Employee { ID= 1001, Name = "Priyanka", Salary = 80000 },
new Employee { ID= 1002, Name = "Anurag", Salary = 90000 },
new Employee { ID= 1003, Name = "Preety", Salary = 80000 }

b
IEnumerable<Employee> result = (from emp in listEmployees

where emp.Salary == 80000

select emp).ToList();//Immediate Execution
listEmployees.Add(new Employee { ID = 1004, Name = "Santosh", Salary = 80000 });
foreach (Employee emp in result)

{

}
Console.ReadKey();

Console.WriteLine($" {emp.ID} {emp.Name} {emp.Salary}");

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Exercises

Numbers from range

Given an array of integers, write a query that returns list of numbers greater than 30
and less than 100.

Expected input and output
(67, 92, 153, 15] - 67, 92

Click here to see example solution

Minimum length

Write a query that returns words at least 5 characters long and make them uppercase.

Expected input and output

"computer", "usb" - "COMPUTER"

Click here to see example solution

Select words

Write a query that returns words starting with letter 'a’ and ending with letter 'm’.

Expected input and output
"mum", "amsterdam", "bloom" - "amsterdam"

Click here to see example solution

Top 5 numbers

Write a query that returns top 5 numbers from the list of integers in descending order.

Expected input and output
(78, -9, 0, 23, 54, 21, 7, 86] - 86 78 54 23 21

Click here to see example solution

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Square greater than 20

Write a query that returns list of numbers and their squares only if square is greater
than 20

Expected input and output
(7, 2, 30] - 7 - 49, 30 - 900

Click here to see example solution

Replace substring

Write a query that replaces 'ea’ substring with astersik (*) in given list of words.

Expected input and output
"learn", "current", "deal" - "l1l*rn", "current", "d*1"

Click here to see example solution

Last word containing letter

Given a non-empty list of words, sort it alphabetically and return a word that contains
letter 'e'.

Expected input and output
["plane"’ "ferry"’ "Car", "bike"]*) "plane"

Click here to see example solution

Shuffle an array [Medium

Write a query that shuffles sorted array.

Expected input and output

_331]

Click here to see example solution

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Decrypt number | Medium

Given a non-empty string consisting only of special chars
{ryr, rrr, ver, 4, s, ver, e, vgr, e o} return @ number (as a string) where each
digit corresponds to given special char on the keyboard

Expected input and output
"())(" N "9009"

n*$ (#&n ., "84937"

mrrrrrrrrrre o1 111111111"

Click here to see example solution

Most frequent character [Medium

Write a query that returns most frequent character in string. Assume that there is only
one such character.

Expected input and output
"panda" - 'a' "n093nfv034nie9"- 'n'

Click here to see example solution

Unique values | Medium

Given a non-empty list of strings, return a list that contains only unique (non-duplicate)
strings.

Expected input and output
["abcll’ "XyZ", "klm"’ "XyZ", "abC", "abC", llrst"] N ["klm"’ llrst"]

Click here to see example solution

Uppercase only [Medium

Write a query that returns only uppercase words from string.

Expected input and output
"DDD example CQRS Event Sourcing" — DDD, COQRS

Click here to see example solution

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Arrays dot product [Medium

Write a query that returns dot product of two arrays.
Expected input and output
[1, 2, 31, [4, 5, 6] - 32 [7, 0, ~ 74

Click here to see example solution

Frequency of letters [Medium

Write a query that returns letters and their frequencies in the string.

Expected input and output

"gamma" — "Letter g occurs 1 time(s),

Letter a occurs 2 time(s), Letter
m occurs 2 time(s)"

Click here to see example solution

Name :Mona Abdelmonem Email: monasallam400@gmail.com

Important Links

- Mona400/LINQ: Exercises & solutions (github.com)

- Language-Integrated Query (LINQ) (C#) | Microsoft Learn

- LINQ Tutorial For Beginners and Professionals - Dot Net Tutorials

- C# programming exercises - examples with solutions (csharpexercises.com)

-All C# Ling Program With Examples | Techstudy

Name :Mona Abdelmonem Email: monasallam400@gmail.com

THANK YOU

Email: monasallam400@gmail.com

LinkedIn: Mona Abdelmonem | LinkedIn

